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Abstract

We have developed a constitutive model and failure criteria, which account for the competition between shear-yielding

and crazing, and provide a framework for the quantitative prediction of the deformation and fracture response of glassy

polymers. To represent shear-yielding we use the model of Boyce et al. (e.g. [Mech. Mater. 7 (1988) 15]), which has been

recently re-formulated by Anand and Gurtin [Int. J. Solids Struct. 40 (2003) 1465]. To model crazing, we introduce a

continuum constitutive relation which contains the three ingredients of crazing: initiation, widening, and breakdown.We

allow for local inelastic deformation due to shear-yielding in possible concurrence with that due to crazing, and introduce

a craze-initiation criterion based on the local maximum principal tensile stress reaching a critical value which depends on

the local mean normal stress. After crazing has initiated, our continuum model represents the transition from shear-flow

to craze-flow by a change in the viscoplastic flow rule, in which the dilational inelastic deformation associated with craze-

plasticity is taken to occur in the direction of the local maximum principal stress. Finally, for situations in which the local

maximum tensile stress is positive, craze-breakdown and fracture is taken to occur when a local tensile plastic craze strain

reaches a critical value. We have implemented our constitutive model in a finite-element computer program. This finite-

element program permits the modeling of failure by an element-removal technique.

We have calibrated the constitutive parameters in our model for the important glassy polymer, polymethylmethac-

rylate (PMMA) under normal dry conditions. We show that our model, when suitably calibrated and implemented, is

able to reasonably-well predict the macroscopic load–displacement curves, and local aspects of the craze-flow and

fracture processes in (a) a thin plate with a circular hole under tension, and (b) a notched beam in four-point bending.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Under stress states where the maximum principal stress is compressive, amorphous glassy polymers

typically show extensive plastic deformation by a ‘‘shear yielding’’ mechanism which involves profuse
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densely-packed microscopic shear bands; the material shows substantial ductility, and eventual fracture

occurs at large stretches by a chain-scission mechanism. In contrast, under stress states where the maximum

principal stress is tensile, glassy polymers may at first show a little (or no) macroscopic inelastic defor-

mation due to shear-yielding, but then the mechanism of inelastic deformation switches to ‘‘crazing’’. An
individual craze is a thin plate-like microscopic region in the material with a microstructure distinguished

by a dense array of fibrils (interspersed with elongated voids) which span the boundaries of the individual

crazes. The plate boundaries of the crazes are typically oriented perpendicular to the maximum principal

stress direction, and the dominant inelastic deformation occurs by craze widening in the local maximum

principal stress direction. Macroscopically, however, the material shows little ductility, and the nominally

brittle fracture occurs by craze-breakdown, crack-formation and crack-growth to failure. In most high

molecular weight, flexible chain glassy polymers, such as polystyrene (PS) and polymethylmethacrylate

(PMMA), 1 fracture under stress states where the maximum principal stress is tensile, is preceded by this
craze-initiation, widening, and breakdown process (e.g. Kambour, 1973; Kramer, 1983).

A significant advance in modeling the plastic deformation of amorphous polymers by shear-yielding has

been made by Parks et al. and their co-workers (e.g. Parks et al., 1985; Boyce et al., 1988; Arruda and

Boyce, 1993), and by Wu and Van der Giessen (1993); more recently, Anand and Gurtin (2003) have

reformulated the theory within a rigorous thermodynamic framework. In contrast, although the phe-

nomenon of crazing has been widely studied over the past four decades, and considerable understanding of

the micromechanisms of crazing and cracking in amorphous polymers has been developed (e.g. Kambour,

1973; Andrews, 1973; Argon and Hannoosh, 1977; Kramer, 1983; Narisawa and Yee, 1993; Donald, 1997),
the incorporation of this understanding into an engineering tool for the quantitative prediction of the defor-

mation and fracture response of glassy polymers is just beginning to emerge (e.g. Estevez et al., 2000; Tijssens

et al., 2000a,b; Socrate et al., 2001).

Most studies on fracture of glassy polymers are based on the standard framework of linear elastic

fracture mechanics (e.g. Kinloch and Young, 1983; Williams, 1984). However, as noted by Estevez et al.

(2000), this approach ignores the process of initiation, widening and breakdown of crazes, and cannot be

used when shear-yielding of the material may be occurring at other locations in the body, especially when

there are no initial sharp cracks in the body. Classical fracture mechanics cannot deal with crack nucle-
ation, and the numerical simulation of crack propagation has also been a challenge for this classical theory.

The recent work of Van der Giessen and co-workers (e.g. Estevez et al., 2000; Tijssens et al., 2000a,b) and

Socrate et al. (2001) is based on ‘‘cohesive surface’’ modeling of craze-initiation, growth and breakdown. 2

Cohesive surface modeling of fracture started more than 40 years ago with the work of Barenblatt (1959)

and Dugdale (1960). In recent years, cohesive surface models have been widely used to numerically simulate

fracture initiation and growth by the finite-element method (e.g. Xu and Needleman, 1994; Camacho and

Ortiz, 1996). Typically, a set of cohesive surfaces are introduced in the finite-element discretization by the

use of special interface elements which obey a non-linear interface traction-separation constitutive relation
which provides a phenomenological description for the complex microscopic processes that lead to the

formation of new traction-free crack faces. The loss of cohesion, and thus crack nucleation and extension

occurs by the progressive decay of interface tractions. The interface traction-separation relation usually

includes a cohesive strength and cohesive work-to-fracture. Once the local strength and work-to-fracture

criteria across an interface are met, decohesion occurs naturally across the interface, and traction-free

cracks form and propagate along element boundaries. An important characteristic of this methodology for

modeling fracture initiation and propagation is that macroscopic fracture criteria, based on elastic or

elastic–plastic analyses, such as KI ¼ KIC or JI ¼ JIC, are not needed, because material strength and
1 But not polycarbonate, which does not craze under normal circumstances in the absence of solvents.
2 Socrate et al. (2001) do not consider the breakdown stage which leads to final fracture.
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toughness, and crack nucleation and propagation are all characterized by the local traction-separation

relation and the cohesive surface methodology. 3 Of special note is that the interface constitutive model

used by Van der Giessen and co-workers (e.g. Estevez et al., 2000; Tijssens et al., 2000a,b) is an elastic–

viscoplastic traction-separation relation which accounts for the three separate stages of craze-initiation,
widening, and breakdown. While Van der Giessen and co-workers have produced informative two-

dimensional parametric numerical studies on craze-initiation, crack formation and crack growth around

circular holes in plates under far-field tension, and in cracked plates under mode I loading conditions, much

work remains to be done to correlate their parametric studies with actual experimental results, and to

develop a truly predictive numerical capability for engineering design.

The purpose of the present paper is to present an alternative approach to modeling the competition between

shear-yielding and crazing, and to develop the framework of an engineering tool for the quantitative prediction

of the deformation and fracture response of glassy polymers. Instead of attempting to represent each indi-
vidual craze with an interface element, we will use a continuum constitutive relation which contains the three

ingredients of crazing, viz., initiation, widening, and breakdown. Our model shall not account for the typical

fine microstructural details of crazing; instead, for the continuum level of interest here, the inelastic

deformation due to crazing will be defined as an average over a microstructural representative volume

element that contains enough plate-like craze regions to result in an acceptably smooth process at the

macroscopic level (prior to fracture). We will allow for local inelastic deformation due to shear-yielding in

possible concurrence with that due to crazing, and introduce a simple craze-initiation criterion based on the

local maximum principal tensile stress reaching a critical value which depends on the local mean normal
stress. After crazing has initiated, our continuum model will represent the transition from shear-flow to

craze-flow by a change in the viscoplastic flow rule, in which the dilational inelastic deformation associated

with craze-plasticity will be taken to occur in the direction of the local maximum principal stress. 4 Finally, in

order to model fracture we shall adopt a simple rule: for situations in which the local maximum tensile stress

is positive, fracture will be taken to occur when a local tensile plastic craze strain reaches a critical value.

We have implemented our constitutive model in the finite-element computer program ABAQUS/Explicit

ABAQUS (2002) by writing a user material subroutine. This finite-element program permits the modeling

of failure, when user-specified critical values of certain parameters are reached, by an element-removal
technique. By employing an appropriately dense (but computationally efficient) finite-element mesh, we

shall show that it is possible to predict, with reasonable quantitative accuracy, the major features of the

macroscopic deformation and fracture behavior of components made from glassy polymers which craze.

In particular, we shall demonstrate that our model, when suitably implemented and calibrated against a

suite of experiments to determine the constitutive parameters in the model for PMMA, is able to rea-

sonably-well predict the macroscopic load–displacement curves, and local aspects of the craze-flow and

fracture processes in (a) a thin plate with a circular hole under tension, and (b) a notched beam in four-

point bending, made from this important glassy polymer.
3 There are still at least two key issues that need to be addressed in the cohesive surface modeling of fracture: (a) While it is relatively

straightforward to construct a traction-separation relation for normal separation across an interface to model mode I conditions,

elastic–plastic traction-separation relations for combined opening and sliding, together with the experimental methods needed to

determine the parameters that might enter such coupled interface constitutive relations, are not well-developed, even for two-

dimensional problems, and this issue is expected to be substantially more complicated in three dimensions. (b) The cohesive interface

approach numerically restrains the orientation of crack nucleation and propagation. Once a finite-element mesh is chosen, the crack

can only nucleate and grow along the element boundaries. In the case of crazing, the initial element boundaries may not be aligned

perpendicular to the evolving local maximum principal stress direction.
4 By incorporating such a constitutive model which allows for a local switch in the flow rule from shear-flow to craze-flow, we avoid

a priori assumptions concerning the orientation and location of interface elements for crazing, assumptions which are inherent in the

cohesive interface approach.
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The plan of this paper is as follows. In Section 2 we develop our constitutive model. In Section 3 we

describe our experiments to calibrate the material parameters in the model for PMMA; we limit our study

to experiments performed under normal dry conditions. In Section 4 we verify the predictive capabilities of

our constitutive model and computational procedures for the deformation and fracture response of notched
components made from PMMA. We close in Section 5 with some final remarks.
2. Constitutive equations for plastic deformation. Fracture criteria

In this section we begin by summarizing the constitutive model for plastic deformation of amorphous

polymeric materials by the shear-yielding mechanism that we shall use in this paper (Anand and Gurtin,

2003). This (isothermal) model is based on the multiplicative decomposition, F ¼ FeFp, of the deformation

gradient F into elastic and plastic parts, Fe and Fp (Kroner, 1960; Lee, 1969). 5 The model also contains two

internal variables: a variable s > 0 that represents an isotropic intermolecular resistance to plastic flow; and

an unsigned variable g that represents the local free-volume. 6 Then, in terms of the variables

w Helmholtz free energy per unit volume of the relaxed configuration

T, T ¼ T> Cauchy stress

F, detF > 0 deformation gradient

Fp, detFp ¼ 1 plastic part of the deformation gradient

s, s > 0 isotropic resistance to plastic flow

g free-volume

and the definitions

Fe ¼ FFp�1

, detFe > 0 elastic deformation gradient

Ce ¼ Fe>Fe elastic right Cauchy–Green strain

Ee ¼ 1
2
ðCe � 1Þ elastic strain

Te ¼ Re>TRe stress conjugate to the elastic strain Ee

r ¼ 1
3
trT mean normal stress

Te
0 ¼ Te � r1 deviatoric stress

Te ¼
P3

i¼1 riei � ei, with r1 P r2 P r3 spectral decomposition of Te

Bp ¼ FpFp> left Cauchy–Green tensor corresponding to Fp

Bp
0 ¼ Bp � 1

3
ðtrBpÞ1 deviatoric part of Bp

kp ¼ 1ffiffi
3

p
ffiffiffiffiffiffiffiffiffiffi
trBp

p
effective distortional plastic stretch

Dp ¼ symð _FpFp�1Þ; trDp ¼ 0 plastic stretching

the constitutive equations, under the approximative assumption of small elastic stretches, are:
5 Notation: r and Div denote the gradient and divergence with respect to the material point X in the reference configuration; grad

and div denote these operators with respect to the point x ¼ yðX; tÞ in the deformed configuration, where yðX; tÞ is the motion; a

superposed dot denotes the material time-derivative. The deformation gradient, velocity and velocity gradient are given by F ¼ ry,

v ¼ _y, and L ¼ grad v ¼ _FF�1, respectively. Throughout, we write Fe�1 ¼ ðFeÞ�1, Fp�> ¼ ðFpÞ�>, etc. We write aymA, skwA,

respectively, for the symmetric, and skew parts of a tensor A. The deviatoric part of a tensor A is denoted by A0. Also, the inner

product of tensors A and B is denoted by A � B, and the magnitude of A by jAj ¼
ffiffiffiffiffiffiffiffiffiffiffi
A � A

p
.

6 It is commonly believed that the evolution of the local free-volume is the major reason for the highly non-linear stress–strain

behavior of glassy materials which precedes the yield-peak and gives rise to the post-yield strain-softening.
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(1) Free energy

The Helmholtz free energy is taken in the non-interactive form
7 Cf
8 To

for x.
9 Al
w ¼ weðEeÞ þ wpðkpÞ; ð2:1Þ

where we is an elastic free energy, and wp a plastic free energy. The elastic free energy is taken in the

standard form for small elastic stretches
we ¼ GjEe
0j
2 þ 1

2
KjtrEej2; ð2:2Þ
where G and K are the elastic shear and bulk moduli, respectively. In amorphous polymeric materials the

major part of wp arises from an ‘‘entropic’’ contribution, and motivated by statistical mechanics models of
rubber elasticity, 7 is taken in the specific form
wp ¼ lRk
2
L

kp

kL

� �
x

�
þ ln

x
sinh x

� �
� 1

kL

� �
y � ln

y
sinh y

� ��
; ð2:3Þ

x ¼ L�1 kp

kL

� �
; y ¼ L�1 1

kL

� �
; ð2:4Þ
where L�1 is the inverse 8 of the Langevin function Lð� � �Þ ¼ cothð� � �Þ � ð� � �Þ�1
. This functional form for

wp involves two material parameters: lR, called the rubbery modulus, and kL called the network locking

stretch.

(2) Equation for the stress
., T

ev

so
Te ¼ owe

oEe ¼ 2GEe
0 þ KðtrEeÞ1: ð2:5Þ
(3) Equation for back stress 9
Sback ¼ 2sym0

owp

oBp B
p

� �
¼ lBp

0 ; with ð2:6Þ

l ¼ 1

3kp
owp

okp
¼ lR

kL
3kp

� �
L�1 kp

kL

� �
: ð2:7Þ
The back stress modulus l ! 1 as kp ! kL, since L�1ðzÞ ! 1 as z ! 1.

(4) Flow rule

The evolution equation for Fp is
_Fp ¼ DpFp; FpðX; 0Þ ¼ 1; ð2:8Þ

with Dp given by the flow rule
Dp ¼ mp
Te

0 � Sback

2�s

� �
; mp ¼ m0

�s
s� ar

 !1
m

; 0 < m6 1; ð2:9Þ
reloar (1975), Arruda and Boyce (1993), Anand (1996).

aluate x ¼ L�1ðyÞ for a given y in the range 0 < y < 1, we numerically solve the non-linear equation f ðxÞ ¼ LðxÞ � y ¼ 0

see Arruda and Boyce (1993).
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where
10 W

warran
�s ¼ 1ffiffiffi
2

p jTe
0 � Sbackj; and mp ¼

ffiffiffi
2

p
jDpj; ð2:10Þ
are an equivalent shear stress and equivalent plastic shear-strain rate, respectively. Here, m0 is a reference

plastic shear-strain rate, a a pressure sensitivity parameter, and m a strain-rate sensitivity parameter. The

limit m ! 0 renders (2.9) rate-independent, while m ¼ 1 renders (2.9) linearly viscous.

(5) Evolution equations for the internal variables s and g
A key feature controlling the initial plastic deformation of amorphous materials is the evolution of the

local free-volume associated with the metastable state of these materials, and it is commonly believed that

for glassy polymers the evolution of this free-volume is the major reason for the highly non-linear stress–
strain behavior that precedes the yield-peak and gives rise to post-yield strain-softening. During this initial

stage of the loading process we expect the free-volume g to increase monotonically to an equilibrium value

gcv. On the other hand, the observed yield-peak suggests that the flow resistance s first increases smoothly to

a peak value and then decrease smoothly to an equilibrium value scv. With this in mind, the evolution of s
and g are taken to be governed by the coupled differential equations 10
_s ¼ h0 1� s
~sðgÞ

� �
mp; sðX; 0Þ ¼ s0;

_g ¼ g0 s
scv
� 1

� �
mp; gðX; 0Þ ¼ 0;

9=
; ð2:11Þ
with
~sðgÞ ¼ scv½1þ bðgcv � gÞ�; ð2:12Þ

where fh0; g0; scv; b; gcvg are additional material parameters. Here ~s ¼ ~sðgÞ is a saturation value of s: _s is

positive for s < ~s and negative for s > ~s. By definition mp is non-negative. Assuming that mp > 0, all solutions

to the pair of evolution equations satisfy
s ! scv and g ! gcv as t ! 1:
We restrict attention to the initial conditions s ¼ s0 with

s0 6 s6 scvð1þ bgcvÞ:
Also, as is tacit from (2.11)2, the free-volume is measured from the value g ¼ 0 in the virgin state of the
material, and thus g at any other time represents a change in the free-volume from the initial state.

2.1. Modification of the constitutive equations to model craze-initiation, flow, and breakdown

The overall inelastic deformation due to craze-initiation and growth is always inhomogeneous at the

microstructural length scales associated with crazing. We emphasize that our model shall not account for

the typical fine microstructural details of crazing. The spatially continuous fields that define our theory are

to be considered as averages meant to apply at length scales which are large compared to those associated

with the fine structure of the crazes and their distribution in a representative volume element. That is, for

the continuum level of interest here, the inelastic deformation due to crazing will be defined as an average

over a microstructural representative volume element (the material neighborhood of a continuum material
point X) that contains enough plate-like craze regions to result in an acceptably smooth process.

What constitutes an appropriate model for craze-initiation is probably the least well-agreed-upon

ingredient of the overall modeling of crazing in the literature. Argon and coworkers (e.g. Argon and
e expect that ~s (and perhaps h0 and g0) may, in general, depend on mp, but currently there is insufficient experimental evidence to

t such a refinement.
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Hannoosh, 1977; Argon et al., 1977) have emphasized that stress-based criteria governing initiation are

hard to determine with precision from experiments because of the importance of imperfections in con-

trolling the local stress states and the sites of craze-initiation. In tension–torsion, stress-controlled exper-

iments on thin-walled tubular specimens with controlled microroughness, these authors observed that at
stress levels where the equivalent shear stress, �s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2ÞT0 � T0

p
, and mean normal stress, r, were below

�0.5 of the yield strength Y of the material (due to shear-yielding), there was a time delay between the

application of stress, and the first appearance of crazing. Their experiments showed that the delay time for

craze-initiation decreases with increasing values of equivalent shear stress or mean normal stress, and

becomes negligible at stress levels greater than �0.5 of the yield strength of the material. Under these

circumstances, craze-initiation may be considered an instantaneous event when a suitable local critical

stress state is reached. Since we are concerned with the competition between shear-yielding and crazing, and

eventually craze-breakdown and fracture, which typically occurs at stress levels higher than �0.5 of the
yield strength, we will ignore considerations of incubation times, and adopt a simple time-independent stress-

based criterion for craze-initiation. In this time-independent limit, Argon and Hannoosh (1977) have sug-

gested that under situations in which the local mean normal stress is positive, r > 0, crazes initiate when the

local equivalent shear stress reaches a mean normal stress-dependent critical value (their Eq. (22)):
11 T

molecu

microc

equiva

mecha

estima
�s ¼ �scrðrÞ > 0; with �scrðrÞ ¼
AY

C þ 3r=2YQ
: ð2:13Þ
Here Q ¼ 0:0133 is a fixed factor controlling the dependence �scr on the mean normal stress r, and ðA;CÞ are
temperature-dependent material constants. Although, Argon and co-workers have suggested (2.13) as the

time-independent limiting form of their detailed micromechanical time-dependent model, 11 this criterion

does not reveal that at an instant when crazes might be considered to have initiated in a macroscopic sense,

they are typically oriented perpendicular to the maximum principal tensile stress direction.

The earliest stress-based craze-initiation criterion is due to Sternstein and co-workers (e.g. Sternstein and

Ongchin, 1969; Sternstein and Meyers, 1973). Based on biaxial plane-stress (r3 ¼ 0) experiments on
PMMA plates with circular holes, they postulated that the critical condition for craze nucleation is when a

‘‘stress bias’’ rB reaches a critical value
rB ¼ A
r
þ B; ð2:14Þ
where A and B are temperature-dependent material parameters. Under plane stress conditions with r3 ¼ 0,

they defined the stress bias by rB ¼ jr1 � r2j. This quantity is the difference between the maximum and

intermediate principal stresses when r1 and r2 are positive; however, it becomes the difference between the

maximum and the minimum principal stress when either r1 or r2 is compressive. Thus, as noted by Ox-

borough and Bowden (1973), the physical interpretation of rB is unclear, nor is it clear how to evaluate rB

for a general triaxial stress state. A further difficulty with this criterion is that while jr1 � r2j represents an
in-plane shear stress intensity, the crazes actually nucleate and grow in the direction of the maximum

principal tensile stress. Noting this difficulty, Oxborough and Bowden (1973), based on their own experi-
ments on PS, found that their experimental data for craze-initiation was better fit to a criterion in which the

maximum principal tensile strain �1 reaches a critical value which depends on the mean normal stress r:
hey modeled craze-initiation by postulating: (i) the formation of microcavities by the arrest of intense localized plastic flow at a

lar scale, with the rate at which such microcavities form depending on the local equivalent shear stress; (ii) the growth of these

avities by plastic expansion into spongy craze nuclei, with the rate at which the microcavities grow depending on the local

lent shear stress and the mean normal stress; (iii) the subsequent growth of the spongy craze nucleus by a meniscus instability

nism, to initiate a macroscopic craze. Based on this micromechanical model they developed an expression which provides an

te for the time to initiate a craze under a given stress state.
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�1 ¼ �1;crðrÞ > 0; with �1;cr ¼
X 0

r
þ Y 0; ð2:15Þ
where X 0 and Y 0 are temperature-dependent parameters. Since �1 ¼ fr1 � mðr2 þ r3Þg=E for an isotropic

elastic material, with ðE; mÞ the usual Young�s modulus and Poisson�s ratio, this criterion may be written as
r1 � mðr2 þ r3Þ ¼
X
r
þ Y ; ð2:16Þ
where X ¼ EX 0 and Y ¼ EY 0. For plane stress this equation is very similar to the criterion (2.14) proposed

by Sternstein and Ongchin (1969).

The craze-initiation criterion (2.16) of Oxborough and Bowden may be further rearranged as a criterion

in stress space, wherein craze-initiation may be taken to occur when the maximum principal stress r1

reaches a critical value which depends on the mean normal stress r:
r1 ¼ r1;crðrÞ > 0; with r1;crðrÞ ¼ c1 þ
c2
r
þ c3r; ð2:17Þ
where c1 ¼ Y =ð1þ mÞ, c2 ¼ X=ð1þ mÞ, and c3 ¼ 3m=ð1þ mÞ.
Based on this brief review of the literature, in this paper we shall assume that crazing in a representative

volume element (the material neighborhood of a continuum material point X) can initiate provided the

following two conditions are met:

(C1) the maximum principal stress and the mean normal stress are positive
r1 > 0; r ¼ 1

3
ðr1 þ r2 þ r3Þ > 0; ð2:18Þ
and

(C2) the maximum principal stress r1 reaches a mean normal stress-dependent critical value
r1 ¼ r1;crðrÞ > 0: ð2:19Þ
After crazing has initiated and has become fully-developed, the average macroscopic plastic flow be-

comes oriented in the direction of the maximum principal stress. The dominant inelastic deformation

associated with fully-developed craze-plasticity occurs by widening of the crazes in the direction of the

maximum principal stress. Following Argon (1999), the macroscopic averaged tensile plastic strain rate np

may be kinematically related to the lateral translation of a given volume fraction of active craze borders as

depicted schematically in Fig. 1, which shows active planar crazes separated by an average spacing h,
thickening at an average rate _d, such that np ¼ _d=h.

In our continuum model we will represent the transition from shear-flow to craze-flow by a change in the

flow rule. To do this we use a switching parameter v having values
v ¼ 1 if conditions C1 and C2 are met;
0 otherwise:

�
ð2:20Þ
Once the craze-initiation conditions C1 and C2 have been met, the craze-flow will be taken to continue as

long as the maximum principal stress is positive. Accordingly, we set
Dp ¼
mp

Te
0
�Sback

2�s

� �
; mp ¼ m0 �s

s�ar

� �1
m
; if v ¼ 0;

npê1 � ê1; np ¼ n0
r1

scraze

n o1
m
; if v ¼ 1 and r1 > 0:

8><
>: ð2:21Þ



h

δ

P

Widening crazes

ξ

.

Fig. 1. An idealization of craze-plasticity where the macroscopic averaged tensile craze strain rate np is determined by the thickening

rate _d of crazes at an average spacing h. After Argon (1999), Fig. 7.
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Here, n0 is a reference craze strain rate, and scraze is the resistance to craze-flow, which we take to be a

constant. Also, m is the strain-rate sensitivity parameter for craze-flow, which is taken to be the same as that

for shear-flow. We call
12 W

stresse

effectiv

of the
�p ¼
Z

np dt ð2:22Þ
the craze-strain.

Finally, in order to model craze-breakdown and fracture, we adopt the simple rule that for situations in

which r1 > 0, craze-breakdown occurs when the local craze-strain �p reaches a failure value �pf :
�p 6 �pf : ð2:23Þ

On the other hand, for situations when r1 6 0, ductile fracture due to molecular chain-scission will be taken
to initiate when the effective plastic stretch, kp, reaches a critical value kpf :
kp 6 kpf : ð2:24Þ

We have implemented our constitutive model in the finite-element computer program ABAQUS/Explicit

ABAQUS (2002) by writing a user material subroutine. This finite-element program permits the modeling

of failure, by an element-removal technique. To avoid numerical instabilities, once either of the two fracture

criteria are met, the corresponding material resistances are not instantly set to zero, but rapidly decreased to

zero within a few increments. 12
e recognize that our element-removal methodology implicitly introduces an unspecified small time-constant during which the

s decay to zero. A better, more formal approach would be to incorporate a damage variable, whose evolution reduces the

e moduli, creating a stable fracture mechanism that couples the fracture in a continuous sense to the already formulated features

model. We leave such a refinement for future work.



3134 B.P. Gearing, L. Anand / International Journal of Solids and Structures 41 (2004) 3125–3150
3. Estimation of material parameters for PMMA

In this section we present the results of our efforts at estimation of the material parameters for our

constitutive model, and also the failure values of the craze-strain and the effective plastic stretch, in the
fracture criteria. Recall that the material parameters that need to be determined are

(1) The elastic shear and bulk moduli ðG;KÞ in the elastic part of the free energy.

(2) The parameters ðlR; kLÞ in the plastic part of the free energy.

(3) The parameters fm0;m; a; h0; g0; scv; b; gcv; s0g in the flow rule and the evolution equations for ðs; gÞ for
shear-flow.

(4) The function r1;crðrÞ in the craze-initiation criterion, and the parameters fn0; scraze;mg in the function

for craze-flow.
(5) The parameters f�pf ; k

p
f g in the failure criteria.

The values of elastic moduli ðG;KÞ are determined by measuring the Young�s modulus E and Poisson�s
ratio m of the material in a compression experiment and using standard conversion relations of isotropic

elasticity to obtain the elastic shear and bulk moduli. The parameters fm0;mg are estimated by conducting a

strain-rate jump experiment in simple compression. The pressure sensitivity parameter a is estimated from

compression experiments under superposed hydrostatic pressure reported in the literature. The remaining

parameters fh0; g0; scv; b; gcv; s0g and ðlR; kLÞ for shear-flow may be estimated by fitting a stress–strain curve
in compression to large strains.

The craze-initiation function r1;crðrÞ is estimated from three sets of experiments: (a) smooth-bar tension

tests, (b) notched-bar tension tests, and (c) tests on compact tension specimens (CTS) which contain the

standard notch geometry, but are not fatigue pre-cracked. These three sets of experiments are chosen to

provide a reasonably large range of positive mean normal stresses, r, at craze-initiation.
For the craze-flow parameters, fn0; scraze;mg, the strain-rate sensitivity m is taken to be the same as that

for shear-flow; the parameter scraze which represents the craze-matter resistance to stretching is estimated

from the stress levels observed in the simple compression experiment at large values of compression. The
parameter n0 is chosen to ensure continuity of the magnitude of the plastic stretching jDpj at the transition
from shear-flow to craze-flow, this gives
13 A

history

tempe

report
n0 ¼
m0ffiffiffi
2

p
� �

scraze
ðs� � ar�Þ

� �
�s�

r�
1

 !( )1
m

; ð3:1Þ
where a quantity with a superscript (*) denotes the value of the quantity at the instant v ¼ 1 when the

change in the flow rule is triggered. The craze-breakdown parameter �pf is estimated from the experiments
on the notched compact-tension specimens.

Finally, since crazing is suppressed in plane strain compression, the parameter kpf for ductile failure is

obtained by fitting a load–displacement curve obtained from a specimen which has been loaded to failure

initiation in a plane strain compression experiment.

A stress–strain curve for PMMA obtained from a monotonic simple compression experiment conducted

at a constant logarithmic strain rate of )0.001/s is shown in Fig. 2; absolute values of stress and strain are

plotted. 13 After an initial approximately linear region, the stress–strain curve becomes markedly non-linear
s is well known, the mechanical response of amorphous thermoplastics is very sensitive to prior thermomechanical processing

. All experiments reported in this paper were conducted on PMMA specimens which were annealed at the glass transition

rature of this material, 105 �C, for 2 h, and then furnace-cooled to room temperature in approximately 15 h. The experiments

ed here were conducted under isothermal conditions at room temperature.
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Fig. 2. Fit of the constitutive model to the stress–strain response of PMMA in simple compression.
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prior to reaching a peak in the stress; the material then strain-softens to a quasi-plateau before beginning a

broad region of rapid strain hardening. Using a value of a ¼ 0:204 (Rabinowitz et al., 1970), a value of
m0 ¼ 0:0017 s�1 and a strain-rate sensitivity parameter m ¼ 0:043 obtained from a strain-rate jump

experiment, the parameters fG;K; lR; kL; h0; g0; scv; b; gcv; s0g were estimated by fitting the stress–strain curve

for PMMA in simple compression, Fig. 2. 14 The fit was performed by judiciously adjusting the values of

these parameters in finite-element simulations of a simple compression experiment (assuming homogeneous

deformation) using a single ABAQUS/C3D8R element. After a few attempts, a reasonable fit was obtained,

and the resulting stress–strain curve is shown in Fig. 2. The list of parameters obtained using this heuristic

calibration procedure are: 15
14 In

Poisso
15 T

kL are

arises

engine

sufficie

onerou
G ¼ 1:17 GPa K ¼ 3:04 GPa lR ¼ 7:70 MPa kL ¼ 1:51;

m0 ¼ 0:0017 s�1 m ¼ 0:043 a ¼ 0:204;

s0 ¼ 37:8 MPa scv ¼ 43:7 MPa h0 ¼ 1:30 GPa;

b ¼ 790 g0 ¼ 7:5 � 10�3 gcv ¼ 0:00025:
Material parameters for craze-initiation, craze-flow, and craze-breakdown are estimated from suitable

experiments and corresponding numerical simulations using the following three-step process:
fact, in determining G and K, we estimated the Young�s modulus E form the stress–strain curve, and a literature value of

n�s ratio of 0.33 for PMMA was assumed.

his list, although not unique, is adequate for present purposes. We note that in addition to G, and K the parameters s0, lR, and
essential to describe the plastic-locking response of the material. The only complexity in describing the shear-yielding response

form the coupled differential equations for s and g, which require the set of material parameters ðh0; g0; scv; b; gcv; s0Þ. If, for
ering purposes, the initial non-linearity in stress–strain curve and the gradual yield-peak, that is the ‘‘yield-transient’’, is not of

nt interest, then the parameters ðh0; g0; scv; b; gcvÞ are not needed, and the task of material parameter determination becomes less

s.



3136 B.P. Gearing, L. Anand / International Journal of Solids and Structures 41 (2004) 3125–3150
Step 1. First, the craze-initiation function r1;crðrÞ is estimated from three sets of experiments and cor-

responding numerical simulations: (a) Simple tension tests on smooth-bar specimens, which have an initial

gauge section 6.35 mm in diameter and 25.4 mm in length, performed under displacement control at 0.0125

mm/s. (b) Notched-bar tension tests on 12.7 mm diameter cylindrical specimens with a notch of root-radius
0.90 mm, depth 3.18 mm, and width 1.80 mm. An extensometer was used to measure the local relative

displacement across the notch faces as the specimen was extended at a rate of 0.0125 mm/s. (c) Tests on

ASTM standard compact tension specimens (CTS) which contain a 60� notch, but are not fatigue pre-

cracked. The compact tension specimens were tested at a displacement rate of 0.0125 mm/s. These three sets

of experiments were chosen to provide a reasonably large range of positive mean normal stresses, r, at
craze-initiation. In our study, which is intended for engineering applications, we did not attempt to specially

polish our specimens, but used as-machined surfaces. 16

To check the repeatability of the response of the smooth-bar tension specimens, four identical specimens
were tested. A representative load–displacement curve is shown in Fig. 3a; for this specimen, fracture occurs

abruptly at a displacement of 1.64 mm. The measured displacements at fracture between the four experi-

ments varied by less than 8%. All the smooth-bar specimens failed in the gauge section, some at multiple

locations, and the fracture surface was always perpendicular to the tension direction. The PMMA tension

specimens show non-linearity prior to failure. This indicates that the material has undergone some shear-

yielding prior to craze-flow and fracture.

The repeatability of the response of the notched-bar tension experiments was investigated by conducting

four experiments on nominally identical specimens. A representative experimental load–displacement curve
is shown in Fig. 3b; for this specimen, fracture is seen to abruptly occur at a displacement of only 0.078 mm.

The displacement at fracture varied by less than 7% between the four specimens that were tested.

A representative load–displacement response from the compact tension experiments is shown in Fig. 3c.

The repeatability of the peak load between the four specimens was found to be within 2%. In these

specimens, crazing initiated at the notch root, and subsequently a front of a craze process zone propagated

in a stable manner into the specimen. The initiation of crazing occurs at a displacement of approximately

0.47 mm, and the load asymptotically falls to about zero load after a displacement of 1.2 mm.

To numerically model the smooth-bar tension and the notched-bar tension experiments, one-half of the
respective specimens were meshed with 390 ABAQUS/CAX4R axisymmetric elements, and to model the

CTS experiment, one half of the specimen was meshed using 5278 plane strain ABAQUS/CPE4R, with a

very fine mesh density in the vicinity of the specimen mid-plane. To estimate the craze-initiation param-

eters, the shear-flow parameters for PMMA were used in the numerical simulations, but craze-flow and

craze-breakdown were numerically suppressed. These numerical simulations provide estimates of r1;cr and r
at craze-initiation, which is taken to occur just prior to the peak loads observed in the experiments. The

values estimated for smooth-bar tension are r1;cr ¼ 76:0 MPa, at r ¼ 25:3 MPa; for notched-bar tension

r1;cr ¼ 68:9 MPa at r ¼ 32:8 MPa; and for the compact tension specimen r1;cr ¼ 65:2 MPa at r ¼ 44:9
MPa. The three data points are plotted in Fig. 4; estimated error bars associated with each data point are

also given. The data is reasonably-well fit by the function
16 T
r1;crðrÞ ¼ c1 þ
c2
r

ð3:2Þ
with
c1 ¼ 45:60 MPa; c2 ¼ 785:56 MPa2:
ypical surface roughness values for our specimens, resulting from the machining procedures used, are on the order of 1–10 lm.
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Fig. 3. Experimental load–displacement curves for PMMA: (a) smooth-bar tension; (b) notched-bar tension; and (c) ASTM standard

compact tension specimen (without a sharp fatigue pre-crack).
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The fit is also shown in Fig. 4. We caution that the values of craze-initiation parameters are expected to be

quite sensitive to the quality of the machined surfaces, and also to the grade of the material from which the

specimens are made. We also recognize that three data points are perhaps not quite enough to unambig-

uously specify the non-linear dependence of r1;cr on r. However, the trend of a decreasing value of r1;cr,
with an increasing value of the mean normal stress r, is clearly revealed by the data. Information from more
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complete experimental programs, as it becomes available, can easily be incorporated into our constitutive

framework and numerical capability for modeling crazing.

Step 2. Recall that we have assumed that the strain-rate sensitivity parameter for craze widening is taken

to be the same as that for shear-flow, m ¼ 0:043, and that the reference craze strain rate n0 is set by

enforcing the continuity of the plastic stretching in switching from shear-flow to craze-flow, Eq. (3.1). The
craze-flow resistance parameter scraze is estimated from the stress levels observed in a simple compression

experiment at a large value of compression. From Fig. 2 we estimate that
17 I

drawn

deform

crazes

were �
craze s

directl
scraze ¼ 200 MPa:
Step 3. The craze-breakdown parameter, �pf , is estimated by repeating the numerical calculations for the

three sets of experiments, using both the shear-flow and the craze-initiation and craze-flow parameters

estimated above, and adjusting the value of �pf to match the failure portion of the load–displacement curves.

Since craze-breakdown and fracture occur rather abruptly in the smooth-bar and notched-bar tension

experiments, the value of �pf is best estimated from the notched compact-tension specimens because of the

stable crack propagation observed in these experiments. A value of
�pf ¼ 0:005
provides the best calibration to the load–displacement curves from the compact tension specimens. 17
n a remarkable set of experiments on specimens with near perfect surfaces and no trapped foreign particles (made from fibers

from individual polystyrene pellets), Argon and Hannoosh (1977) found that their PS specimens showed macroscopic inelastic

ation with a ductility of 5–8% (their Fig. 6). The macroscopic inelastic deformation was a result of extensive closely-spaced

(�10 lm apart) which produced whitening of the gauge section. Post-mortem microscopic examination revealed that the crazes

0.5 lm wide. Based on a craze-width at craze-fracture of �0.5 lm, and a craze spacing of �10 lm, one obtains a macroscopic

train of �5%, as observed by Argon and Hannoosh (1977). The smaller value of �pf ¼ 0:5% observed in our experiments is

y attributable to the imperfections and surface roughness effects in our macroscopic less well-controlled experiments.



Fig. 5. (a) Experimental and calculated load–displacement curves for a smooth-bar tension specimen. (b) Contours of r1, and (c) r at

incipient craze-flow, location 1; (d) mesh at location 2 showing fracture. Note that fracture has occurred at multiple locations in the

gauge section.
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Using the material parameters for shear-flow, together with those for craze-initiation, flow and break-

down estimated above, Fig. 5 shows the measured and numerically-calculated load–displacement curves for

a smooth-bar tension experiment. The load–displacement response is well captured by the model. Note that

the initial break in the numerical load–displacement curve is because of the onset of shear-flow, which precedes

the craze-flow and fracture in PMMA. Contour plots of the maximum principal stress r1, and the mean

normal stress r at a location just prior to peak load, are shown in Fig. 5b and c, respectively. Once the

craze-breakdown conditions are met, the numerical simulation shows fracture at multiple locations, as

indicated in the ‘‘failed’’ mesh of Fig. 5d. This numerical result is consistent with the experimental

observation that smooth-bar tension specimens fracture at multiple locations in the gauge section.

Fig. 6a shows the measured and numerically-calculated load–displacement curves for a notched-bar

tension experiment. Contour plots of r1 and r at locations 1 and 2 on the numerical curve of Fig. 6a are
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shown in Fig. 6b and c. The contours in Fig. 6b indicate that crazing initiates at the notch-root. Fig. 6c

shows that the craze front and the crack due to craze-breakdown propagate into the specimen in a direction
perpendicular to the applied tensile load on the notched specimen.

Fig. 7a shows the measured and numerically-calculated load–displacement curves for an experiment on a

compact tension specimen. Contour plots of r1, r, and �p at locations 1 and 2 on the numerical curve of Fig.

7a are shown in Fig. 7b and c, respectively. The contours in Fig. 7b indicate that crazing initiates at the

notch-root, and those in Fig. 7c show that the craze front and the crack due to craze-breakdown propagate

into the specimen in a direction perpendicular to the applied tensile load on the notched compact tension

specimen. Note that fracture (as modeled by the element-removal technique) is confined to the elements

adjacent to the symmetry plane of the simulation, and the contours of the craze strain �p in Fig. 7c show



Fig. 7. (a) Experimental and calculated load–displacement curves for a notched compact tension specimen. (b) Contours of r1, r, and
�p at incipient craze-flow, location 1 marked in (a). (c) Contours of r1, r, and �p after craze-fracture has propagated part of the way into

the cross-section, location 2 marked in (a). For clarity of presentation, the contour plots are focused on the region in the vicinity of the

notch-root.
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that, while the elements adjacent to the traction-free crack face have suffered some craze-flow, they have not

failed due to craze-breakdown.
Finally, in order to obtain the material parameter kpf for ductile fracture, results from a plane strain

compression experiment were utilized. In such an experiment crazing and craze fracture are inhibited, but

ductile fracture in the material can still occur by the chain-scission mechanism at large values of kp. The full
specimen geometry is modeled using a fine mesh of 3900 ABAQUS/CPE4R plane strain elements. The

compression platens are modeled using rigid surfaces, and a coefficient of friction of 0.08 is assumed to

model the interface friction between the lubricated PMMA and tool steel surfaces. The measured and

calculated load–displacement curves 18 are shown in Fig. 8; the point of ductile fracture initiation is also

indicated. A contour plot of kp at ductile fracture initiation is shown in Fig. 8b; this yields a value of
18 T
kpf ¼ 1:390
for the initiation of ductile fracture.
he experimental load–displacement curve has been corrected for machine and punch/die compliances.
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4. Investigation of predictive capabilities of the model

In this section we investigate the accuracy of the numerical predictions from our calibrated model for

PMMA. We study the deformation and fracture of two prototypical notched components: (a) a thin plate
with a circular hole loaded in tension; and (b) a notched beam loaded in four-point bending.
4.1. Tension of a thin plate with a circular hole

The specimen geometry for this experiment is shown in Fig. 9a. The full three-dimensional geometry is

modeled using 26,084 ABAQUS/C3D8R elements; a detail of the fine mesh in the vicinity of the hole is

shown in Fig. 9b. Fig. 9c shows that the numerically-predicted load–displacement curve is in very good

agreement with the one that was experimentally-measured. Note that the load–displacement curve is non-

linear, once again showing evidence of some shear-flow prior to crazing. The specimen fractured at a dis-

placement of about 1.4 mm into multiple pieces, and showed extensive crack-branching prior to final

failure, Fig. 10a. 19 A corresponding image from the numerical simulation is shown in Fig. 10b.

Fig. 11 shows contour plots of r1 and r at three instances keyed to the numerical load–displacement

curve in Fig. 9c. At location 1, Fig. 11a, the stress distribution shows that a maximum value of r1 ¼ 74:7
MPa and r ¼ 26:8 MPa occur at opposite edges of the hole. Since at r ¼ 26:8 MPa, the critical value of r1

is r1;cr ¼ 74:9 MPa, the stress state at location 1 is just before that necessary to satisfy the craze-initiation

criterion. By location 2, Fig. 11b, craze-flow and fracture have occurred at opposite edges of the hole, as
indicated by the removed elements. 20 At this location, the fracture process is seen to be symmetric about

the window. However, by location 3, Fig. 11c, the cracks have branched away from the centerline of the

specimen; this occurs because of small local numerical perturbations.

The numerical simulation nicely captures the major features observed in the physical experiment: (a) the

non-linear load–displacement curve, (b) the process of crack initiation and propagation with crack-

branching, and (c) fracture into multiple pieces.
4.2. Bending of a notched beam

Four-point bending experiments were conducted on notched specimens, whose geometry is shown

schematically in Fig. 12a. As indicated in this figure, specimens with a notch of 1.98 mm root radius were

tested. A specimen width of 50 mm was chosen so as to approximate plane strain conditions at the notch-

root. The experiments were performed by displacing the center rollers relative to the outer rollers at a

constant displacement rate of 2 mm/min. All rollers were constrained during the experiments to ensure that

they did not rotate. To simulate bending of the sharp-notched beam, one-half of the beam is modelled using

1370 ABAQUS/CPE4R plane strain elements. A detail of the finite-element mesh at the notch-root is
shown in Fig. 12b.

Fig. 13a compares the experimentally-measured and numerically-predicted load–displacement re-

sponse. 21 This time the numerical curve under-predicts the load at fracture by about 20%. The reasons for

this under-prediction are not known, but the fact that the actual loads are higher, indicates that crazing in

the four-point notch-bend experiment initiates at higher levels of r1 and r than those predicted by curve-fit
19 Four different experiments were conducted, and the overall response from the different experiments was very similar, with the

displacements at which fracture occurred varying by less than 4%.
20 Recall that we are using an element-removal technique to model fracture propagation.
21 The load–displacement curve from the experiment has been corrected for an estimated compliance of 0.57 mm/kN of loading

system.



Fig. 9. (a) Specimen geometry with dimensions in mm. (b) Detail of the finite-element mesh in the vicinity of the hole. (c) Comparison

of the experimentally-measured and numerically-predicted load–displacement curves.
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for craze-initiation in PMMA, shown in Fig. 4. We attribute the major reason for this discrepancy to the

sensitivity of the craze-initiation criterion to various statistical effects such as material variability and
surface finish that we have not fully-explored in our work. Fig. 13b and c show the contours of r1 and r at

initiation of craze-flow, and also once the crack has propagated along the specimen centerline, well into the

beam. Cracking due to crazing initiates at the notch-root, and propagates into the beam along the specimen

centerline. We note that although the numerical simulation under-predicts the load at failure, it nicely

captures the process of crack nucleation and propagation due to crazing.



Fig. 10. (a) Image of fractured specimen showing crack-branching and fractured ligaments. Loading direction is vertical. (b) Result

from corresponding numerical calculation.
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5. Concluding remarks

Most previous models for fracture of glassy polymers have been based on the standard framework of

linear elastic fracture mechanics. This approach ignores the important details of the process of crazing in

flexible chain glassy polymers, and it cannot be used when shear-yielding of the material may be occurring at

other locations in the body, especially when there are no initial sharp cracks in the body. Although the

phenomenon of crazing has been widely studied over the past four decades, and considerable understanding

of the micromechanisms of crazing and cracking in amorphous polymers has been developed, the incor-
poration of this understanding into an engineering tool for the quantitative prediction of the deformation

and fracture response of glassy polymers is just beginning to emerge. Of particular note is the recent work of

Van der Giessen and co-workers (Estevez et al., 2000; Tijssens et al., 2000a,b), based on ‘‘cohesive surface’’

modeling of crazing. These authors used an elastic–viscoplastic traction-separation relation which accounts

for the three separate stages of craze-initiation, widening, and breakdown. While they have produced

informative two-dimensional numerical simulations, much work remains to be done to correlate their

parametric studies with actual experimental results. Here, instead of attempting to represent each individual

craze with an interface element, we have developed a continuum-level model which contains the three
ingredients of crazing, viz., initiation, widening, and breakdown. We have allowed for local inelas-

tic deformation due to shear-yielding in possible concurrence with that due to crazing, and introduced a



Fig. 11. Contour plots of r1 and r at (a) location 1, (b) location 2, and (c) location 3 indicated on the numerical load–displacement

curve in Fig. 9. Loading direction is vertical.
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Fig. 12. (a) Schematic geometry (not to scale) of four-point bending experiment. The specimen has a nominal width of 50 mm.

(b) Detail of finite-element mesh at the notch-root.
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craze-initiation criterion based on the local maximum principal tensile stress reaching a critical value which

depends on the local mean normal stress. After crazing has initiated, our continuum model represents the

transition from shear-flow to craze-flow by a change in the viscoplastic flow rule, in which the dilational

inelastic deformation associated with craze-plasticity is taken to occur in the direction of the local maximum

principal stress. Finally, for situations in which the local maximum tensile stress is positive, craze-breakdown

and fracture is taken to occur when a local tensile plastic craze strain reaches a critical value. We have

implemented our constitutive model in a finite-element computer program. We have calibrated the consti-

tutive parameters in our model for PMMA, and shown that our model, when suitably calibrated and
implemented, is able to reasonably-well predict the macroscopic load–displacement curves, and local aspects

of the craze-flow and fracture processes in two prototypical notched components made from this material. 22

In summary, we have attempted to develop the framework of an engineering tool for the quantitative

prediction of the deformation and fracture response of glassy polymers. The results presented here
22 We recognize that, as with all finite-element calculations, our numerical modeling of the craze-fracture process may be ‘‘mesh-

sensitive’’. We have not conducted exhaustive ‘‘mesh-sensitivity’’ analyses for the numerical results presented in this paper. Much needs

to be done to refine the meshes (amongst other considerations) to be able to better represent such fracture processes. However, we

consider that the proposed constitutive model, failure criteria, together with the element-removal methodology, numerically-capture

the highly non-linear complex fracture processes in polymers, in a reasonably-acceptable fashion (for a first attempt).
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Fig. 13. Four-point bending of a sharp-notched beam: (a) comparison of the numerical load–displacement response against the

experiment. Contour plots of r1 and r at (b) location 1, and (c) location 2. Brittle fracture occurs along the specimen centerline.
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represent a first step towards this goal. Much additional work needs to be performed for this framework to

be more-fully fleshed out, and to be truly predictive. Some issues that need special further attention are (i)

craze-initiation: The central ingredient in the continuum model for crazing is the craze-initiation criterion. It

is well known that because of the importance of imperfections in controlling the local stress states and the
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sites of craze-initiation, stress-based criteria for craze-initiation are hard to determine with precision from

experiments. Thus, much work needs to be done to elucidate the statistical aspects of craze-initiation (and

also craze-breakdown). (ii) Effects of strain rate, temperature and the environment: The present research

needs to be extended by conducting additional experiments at various strain-rates and temperatures.
Further, we have limited our attention to normal dry conditions. It is well known that crazing is very

sensitive to the environment, the effects of which need to be appropriately accounted for.
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